Towards the Use of Decision Models (Hierarchy of Choquet Integrals) in Machine Learning and Image Processing

Christophe Labreuche 1,2

¹ **Thales**, cortAlx-Labs, Palaiseau, France ²**SINCLAIR AI Lab**, Palaiseau, France email: christophe.labreuche@thalesgroup.com

In collaboration with Nicolas Atienza, Roman Bresson, Johanne Cohen, Eyke Hüllermeier, Michèle Sebag

Work supported by: FaRADAI project (ref. 101103386) funded by the European Commission under the European Defence Fund (EDF-2021-DIGIT-R,

Context Model with Interaction Hierarchical Decision Models

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Context Model with Interaction Hierarchical Decision Models

Outline

Hierarchical Decision Models with Interaction

- Context
- Model with Interaction
- Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Context Model with Interaction Hierarchical Decision Models

Multi-Criteria Decision problem

Multi-Criteria Decision Aiding (MCDA)

- $N = \{1, ..., n\}$: index set of attributes/features.
- X_i : set of values representing attribute/feature *i* (for $i \in N$).
- $X = X_1 \times \cdots \times X_n$: set of alternatives/instances.

$$\mathbf{x} = (x_1, \dots, x_n) \in X$$
 with $x_i \in X_i$.

- Problem to solve, given a set of alternatives in *X*:
 - choose the most preferred one
 - rank the alternatives from best to worse
 - sort the alternatives into preferential categories
- U : X → ℝ: utility representing preferences of decision maker over X
 - $U(\mathbf{y}) > U(\mathbf{x})$: **y** is preferred to **x**

Context Model with Interaction Hierarchical Decision Models

From a typical MCDA context

Context Model with Interaction **Hierarchical Decision Models**

From a typical MCDA context

Design of Tracking System for Air Traffic Management CDR RCH131 = A320 Aim: Use MCDA to select the best tracking system. **Real trajectory** 360 cfl Tracking quality attributes: **Estimated trajectory** ٠ Position Error (PE) Heading Error (HE) ۲ Completeness (C) Attributes are measured for each type of aircraft: ۲ Commercial Airplanes (CA) AUJ18791 = A320 360 ۲ Recreational Airplanes (RA) Overal Performance And the state of t CTN654 = A320 160 ********************* HE-CA C-CA PE-RA HE-RA PE-CA

Christophe Labreuche

C-RA

Context Model with Interaction Hierarchical Decision Models

... towards the use of MCDA within Machine Learning (ML)

Object Detection in Images

Aim: Locate bounding boxes around objects of interest and classify them.

What we'd like to have ...

- Incorporate MCDA
 - within ML to improve

its interpretability

Context Model with Interaction Hierarchical Decision Models

Outline

- Hierarchical Decision Models with Interaction
 - Context

Model with Interaction

• Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Context Model with Interaction Hierarchical Decision Models

General model

Decomposable preference model [Krantz et al'1971]

 $U(\mathbf{x}) = A(u_1(x_1), \ldots, u_n(x_n))$

where

- $u_i : X_i \rightarrow [0, 1]$: marginal utility function
- $A: [0, 1]^n \rightarrow [0, 1]$: aggregation function

Scale [0, 1] is typically a *satisfaction degree*. Properties:

Monotonicity

$$u_i(x_i) \ge u_i(x'_i) : x_i$$
 at least as good as x'_i
 $v_1 \ge v'_1, \dots, v_n \ge v'_n \Rightarrow A(\mathbf{v}) \ge A(\mathbf{v}')$

Idempotency:

$$A(\alpha,\ldots,\alpha)=\alpha\quad\forall\alpha\in[0,1]$$

Context Model with Interaction Hierarchical Decision Models

Simplest aggregation model

Weighted sum

$$WS_{\mathbf{w}}(\mathbf{v}) = \sum_{i \in N} w_i v_i,$$

where $\mathbf{w} = (w_1, \ldots, w_n)$ are the criteria weights with

$$w_i \ge 0$$
 (monotonicity)
 $\sum_{i \in N} w_i = 1$ (idempotency)

Interest of the WS:

- Very simple to understand
- Criteria weights make sense to people (⇒ Feature Attribution in ML)

Context Model with Interaction Hierarchical Decision Models

Generalization of the Weighted Sum

Piecewise Affine function

Model $PA(\mathbf{v})$

- \mathcal{D} : (finite) partition of $[0, 1]^n$
- PA is a (monotone and idempotent) WS in each domain of ${\cal D}$
- PA is continuous

Interest of the PA:

- Universal approximator
 (⇒ see ReLU-based Neural Networks in ML)
- Might be doable to understand it (⇒ <u>SP-LIME</u> in ML [Singh et al'2016])

Context Model with Interaction Hierarchical Decision Models

A Particular Piecewise Affine model

Choquet integral

Idea:

- Idempotency: it makes sense to compare v_i with v_i
- Piecewise Affine function in domains of the form $v_3 \ge v_1 \ge v_2 \ge \cdots$

$$C_m(\mathbf{v}) = \sum_{S \subseteq N} m(S) \cdot \bigwedge_{i \in S} v_i \qquad (\bigwedge \equiv \min)$$

- m: Möbius coefficients
 - Monotonicity: $\forall i \in N \ \forall S \subseteq N \setminus \{i\}$ $\sum_{T \subseteq S} m(T \cup \{i\}) \ge 0$
 - Normalization: $\sum_{S \subseteq N} m(S) = 1$
- Very versatile model:
 - Complementarity among criteria $(m(S) > 0) \cdots$ veto
 - Redundancy among criteria (m(S) < 0) · · · favor

Context Model with Interaction Hierarchical Decision Models

A Particular Piecewise Affine model

Complexity of the Choquet integral

The Choquet integral contains 2^{*n*} parameters:

$$m: 2^N \rightarrow \mathbb{R}.$$

Submodels of the Choquet integral

$$C_m(\mathbf{v}) = \sum_{S \in S} m(S) \cdot \min_{i \in S} v_i$$

where $S \subseteq 2^N$. Example:

k-additive:

$$\mathcal{S} = \big\{ \mathcal{S} \subseteq \mathcal{N} : |\mathcal{S}| \le k \big\}.$$

Context Model with Interaction Hierarchical Decision Models

Choquet integral

2-additive Choquet integral

$$C_{w}(\mathbf{v}) = \sum_{i=1}^{n} w_{i} v_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\wedge} (v_{i} \wedge v_{j}) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\vee} (v_{i} \vee v_{j}) \qquad [\wedge \equiv \min, \vee \equiv \max]$$

• Monotonicity:
$$\forall i, j \in N \quad w_i \geq 0, w_{i,j}^{\wedge} \geq 0, w_{i,j}^{\vee} \geq 0$$

• Normalization:
$$\sum_{i=1}^{n} w_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\wedge} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{i,j}^{\vee} = 1$$

Context Model with Interaction Hierarchical Decision Models

Choquet integral

Interpretation

Importance of criteria:

$$\phi_i = \mathbf{w}_i + \sum_{j \neq i} \frac{\mathbf{w}_{i,j}^{\wedge} + \mathbf{w}_{i,j}^{\vee}}{2}$$

Interaction between criteria:

$$I_{i,j} = \left\{ egin{array}{l} w^{\wedge}_{i,j} ext{ if } w^{\wedge}_{i,j}
eq 0 \ -w^{\vee}_{i,j} ext{ else} \end{array}
ight.$$

Context Model with Interaction Hierarchical Decision Models

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models
- Identifiability
 - Characterization of the separation frontiers
 - Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Context Model with Interaction Hierarchical Decision Models

Interconnected Choquet Integrals

Theorem [Ovchinnikov'2002]

Any continuous piecewise affine function can be represented by a network of interconnected Choquet integrals.

- Layer a_i: inputs
- Layer s_j: weighted sums of the inputs (1 per affine part)
- Layer U: MinMax function that triggers the correct affine function

Context Model with Interaction Hierarchical Decision Models

Interconnected Choquet Integrals

Discussion

Drawback of previous architecture

- The middle layer (s_j) might be extremely large;
- Fully connected layers are hard to understand and explain.

Modification:

- Consider a tree rather than a fully connected network: more understandable;
- The same approximation quality might be achieved with less nodes but deeper graphs.

Context Model with Interaction Hierarchical Decision Models

Hierarchical models

Limitation of a flat model

Christophe Labreuche Hierarchy of Choquet Integrals in ML

Characterization of the separation frontiers Identifiability Result

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models

2 Identifiability

- Characterization of the separation frontiers
- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Characterization of the separation frontiers Identifiability Result

Identifiability

Identifiability

Identifiability of a model class: injectivity of its parameterization.

- $C = \{F_{\theta}, \theta \in \Theta\}$ a family of functions defined on X
- ⊖ the parameter space
- $\mathcal{F}_{ heta} \in \mathcal{C}$ parameterized by heta

Then C is identifiable if and only if: $\forall \mathbf{x} \in X, \mathcal{F}_{\theta}(\mathbf{x}) = \mathcal{F}_{\theta'}(\mathbf{x}) \Rightarrow \theta = \theta'$.

Illustration

 $\begin{array}{l} \Theta = \mathbb{R}^2, \ X = \mathbb{R}.\\ \mathcal{C}_1 = \{\mathcal{F}_{a,b} : x \mapsto abx, \ (a,b) \in \Theta\} \text{ is not identifiable, as } \mathcal{F}_{3,4} = \mathcal{F}_{6,2}\\ \mathcal{C}_2 = \{\mathcal{F}_{a,b} : x \mapsto ax + b, \ (a,b) \in \Theta\} \text{ is identifiable} \end{array}$

Hierarchical Decision Models with Interaction Identifiability Characterization of the separation frontiers Application to Image Processing

Identifiability

Interest of Identifiability

- It is easier to learn
- The model is interpretable

Our ambition

Identifiability of the UHCI parameters but also the hierarchy.

Not a foregone conclusion ... wrong for graphs

Christophe Labreuche Hierarchy of Choquet Integrals in ML

Characterization of the separation frontiers Identifiability Result

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models
- 2 Identifiability

• Characterization of the separation frontiers

- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Characterization of the separation frontiers Identifiability Result

Separation frontiers of an HCI model

HCI model A: piecewise affine function

- Partition $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_p\}$ of $[0, 1]^n$
- Set of affine functions $\mathcal{L} = \{L_1, \ldots, L_p\}$
- For all $j \in \{1, \dots, p\}$ and $\mathbf{v} \in \mathcal{D}_j$, $A(\mathbf{v}) = L_j(\mathbf{v})$

Separation frontiers of an HCI model

As A is continuous, the separation frontiers between the affine parts are hyperplanes.

Characterization of the separation frontiers Identifiability Result

Separation frontiers of an HCI model

Model:

5

Linear parts:

• $v_1, v_2 \mapsto v_4$ has 2 linear parts:

$$v_1$$
 and $\frac{v_1 + v_2}{2}$
Separation frontiers . . .

• ... of
$$v_3, v_4 \mapsto v_5$$
:

 $V_3 = V_4$

• ... hence of
$$v_1, v_2, v_3 \mapsto v_5$$
:

$$v_1 = v_2$$
, $v_1 = v_3$ and $\frac{v_1 + v_2}{2} = v_3$

Characterization of the separation frontiers Identifiability Result

Separation frontiers of an UHCI model

Assumption

Marginal utility functions are piecewise C^1 functions

$$u_1(x_1) = \begin{cases} f_1(x_1) \text{ if } x_1 \leq \alpha \\ f'_1(x_1) \text{ else} \end{cases}$$

UHCI model U: piecewise C^1 model

- Partition $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_p\}$ of X
- Set of C^1 functions $C = \{C_1, \ldots, C_p\}$
- For all $j \in \{1, \dots, p\}$ and $\mathbf{x} \in \mathcal{D}_j$, $U(\mathbf{x}) = C_j(\mathbf{x})$

Characterization of the separation frontiers Identifiability Result

Separation frontiers of an UHCI model

Illustration

Separation of $v_1, v_2, v_3 \mapsto v_5$	Separation of $x_1, x_2, x_3 \mapsto v_5$
$v_1 = v_2$	$f_1(x_1) = f_2(x_2)$
$v_1 = v_3$	$f_1(x_1) = f_3(x_3)$, $f_1(x_1) = f'_3(x_3)$
$\frac{v_1+v_2}{2}=V_3$	$\frac{f_1(x_1)+f_2(x_2)}{2} = f_3(x_3)$, $\frac{f_1(x_1)+f_2(x_2)}{2} = f'_3(x_3)$
	$X_3 = \alpha$

Characterization of the separation frontiers Identifiability Result

Can we deduce the hierarchy from the separations?

Illustration

Characterization of the separation frontiers Identifiability Result

Can we deduce the hierarchy from the separations?

Illustration

Christophe Labreuche

Hierarchy of Choquet Integrals in ML

Characterization of the separation frontiers Identifiability Result

Can we deduce the hierarchy from the separations?

Theorem [Bresson et al, KR'2021]

The separation frontiers are of the form

• $x_i = \alpha$ for a leaf node $i \in N$;

•
$$\sum_{\ell \in K^+} w_\ell \ u_\ell(x_\ell) = \sum_{\ell \in K^-} w_\ell \ u_\ell(x_\ell)$$
 such that

• $w_{\ell} > 0$ for all $\ell \in K^+ \cup K^-$

•
$$\exists k \in V \text{ and } k^+, k^- \in \text{Children}(k) \text{ s.t.}$$

$$K^+ \subseteq \text{Leaf}(k^+)$$
 and $K^- \subseteq \text{Leaf}(k^-)$

Characterization of the separation frontiers Identifiability Result

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models
- 2 Identifiability
 - Characterization of the separation frontiers
 - Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Characterization of the separation frontiers Identifiability Result

Assumptions

Fact

From the previous construction, the hierarchy cannot always be uniquely determined.

Counter-example #1

For a weighted sum, the hierarchy cannot be recovered from the expression of the model. Example $v_5 = \frac{v_6 + v_7}{2}$, $v_6 = \frac{v_1 + v_2}{2}$ and $v_7 = \frac{v_3 + v_4}{2}$.

Characterization of the separation frontiers Identifiability Result

Assumptions

Notation

Let $k \in V$. For a given CI, we write S_k the set of subsets of Children(k) having a non-zero Möbius coefficient.

Assumption H1

At every aggregation node $k \in V$, Children(k) is the only connected component of graph

 $\langle \text{Children}(k), \{(i,j), i \neq j \text{ s.t. } \exists S \in S_k : \{i,j\} \subseteq S \} \rangle$

Characterization of the separation frontiers Identifiability Result

Illustration of H1

Illustration

H1 forbids to have a model C_{m_k} that is (even only partly) additive.

•
$$v_5 = C_{m_k}(v_1, v_2, v_3, v_4) = \frac{1}{2}v_1 \wedge v_2 + \frac{1}{2}v_3 \wedge v_4$$

• violates H1: {1,2} and {3,4} are disconnected

•
$$v_6 = v_1 \land v_2$$
, $v_7 = v_3 \land v_4$ and $v_8 = \frac{v_6 + v_7}{2}$ is equivalent

• $C_{m_k}(v_1, v_2, v_3, v_4) = \frac{1}{3}v_1 \wedge v_2 + \frac{1}{3}v_2 \wedge v_3 + \frac{1}{3}v_3 \wedge v_4$ satisfies H1

Characterization of the separation frontiers Identifiability Result

Assumptions

Counter-example #2

Assumption H2

For all nodes $k \in V$:

$$|\mathcal{S}_k| \geq 2.$$

Characterization of the separation frontiers Identifiability Result

Illustration of H2

H2 (combined with H1) forbids from having a simple min between two variables.

•
$$v_4 = v_1 \wedge v_2$$
 (violating H2) and $v_5 = \frac{v_3}{2} + \frac{v_3 \wedge v_4}{2}$

• We can rewrite
$$v_5 = \frac{v_3}{2} + \frac{v_1 \wedge v_2 \wedge v_3}{2}$$

Characterization of the separation frontiers Identifiability Result

Identifiability result

Identifiability of UHCI and its hierarchy [Bresson et al, KR'2021]

Let \mathcal{F} and \mathcal{F}' be two UHCI with potentially different hierarchies, fuzzy measures and marginal utility functions. Assume that both models fulfill H1, H2. Assume, $\forall x \in X, \ \mathcal{F}(x) = \mathcal{F}'(x)$.

Then, both models have the same hierarchy, fuzzy measures and marginal utilities.

Neur-HCI: Representation of UHC Experimental results

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result

Application to Machine Learning

- Neur-HCI: Representation of UHCI
- Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Neur-HCI: Representation of UHCI Experimental results

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models
- Identifiability
 - Characterization of the separation frontiers
 - Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Neur-HCI: Representation of UHCI Experimental results

Neuronal Representation

Monotonic Marginal Utility

Conditions on *u_i*:

- u_i is non-decreasing on X_i
- $\lim_{x_i\to -\infty} u_i(x_i) = 0$
- $\lim_{x_i \to +\infty} u_i(x_i) = 1$

Convex sum of sigmoids:

$$u_i(x_i) = \sum_{k=0}^p \frac{r_i^k}{1 + e^{-\left(\eta_i^k x_i - \beta_i^k\right)}},$$

Neur-HCI: Representation of UHCI Experimental results

Neuronal Representation

Monotonic Marginal Utility

Conditions on *u_i*:

- u_i is non-decreasing on X_i
- $\lim_{x_i\to -\infty} u_i(x_i) = 0$
- $\lim_{x_i \to +\infty} u_i(x_i) = 1$

Convex sum of sigmoids:

$$u_i(x_i) = \sum_{k=0}^{p} \frac{r_i^k}{1 + e^{-(\eta_i^k x_i - \beta_i^k)}},$$

Neur-HCI: Representation of UHCI Experimental results

Neuronal Representation

Monotonic Marginal Utility

$$u_{i}(x_{i}) = \sum_{k=0}^{p} \frac{r_{i}^{k}}{1 + e^{-(\eta_{i}^{k}x_{i} - \beta_{i}^{k})}}$$

where

•
$$\sum_{k=1}^{p} r_i^k = 1$$
 and $\forall k, r_i^k \ge 0$
• $\forall k, \eta_i^k \ge 0$

Neur-HCI: Representation of UHCI Experimental results

Neuronal Representation

Choquet Modules

Neur-HCI: Representation of UHCI Experimental results

Composition of the different parts

Composition of aggregation and Marginal Utility patterns [Bresson et al, IJCAI'2020]

Neur-HCI: Representation of UHCI Experimental results

Composition of the different parts

Ensuring Monotonicity and Normalization conditions

	Monotonicity	Normalization
Utility function	clipping:	4
	$r_i^k \leftarrow max(r_i^k, 0)$	$r_i^{\kappa} \leftarrow \frac{r_i^{\kappa}}{\sum_j r_j^j}$
Aggregation	$\mathbb{R} \rightarrow \mathbb{R}^+$ $z_i \mapsto w_i = \operatorname{softmax}(z_i)$	$w_i \leftarrow \frac{w_i}{\sum_j w_j}$
		$Z_i \leftarrow \text{softmax}^{-1}(w_i)$

Neur-HCI: Representation of UHC Experimental results

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result

Application to Machine Learning

- Neur-HCI: Representation of UHCI
- Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Hierarchical Decision Models with Interaction

Neur-HCI: Representation of UHCI Experimental results

Application to Machine Learning

Application to Image Processing

Experimental Results - Performance

Dataset	MLP	Logistic Reg.	CUR	NCI	NCI+U	NHCI	NHCI+U
CPU	0.015 ± 0.021	0.091 ± 0.051	0.024 ± 0.025	0.045 ± 0.039	0.023 ± 0.024	0.030 ± 0.027	0.023 ± 0.026
CEV	0.004 ± 0.004	0.110 ± 0.023	0.084 ± 0.067	0.059 ± 0.012	0.051 ± 0.023	0.035 ± 0.009	0.019 ± 0.017
LEV	0.135 ± 0.021	0.161 ± 0.022	0.143 ± 0.0213	0.136 ± 0.022	0.135 ± 0.019	N/A	N/A
MPG	0.113 ± 0.036	0.090 ± 0.030	0.112 ± 0.099	0.086 ± 0.027	0.079 ± 0.027	0.085 ± 0.029	0.082 ± 0.027
DB	0.143 ± 0.069	0.164 ± 0.071	0.235 ± 0.017	0.139 ± 0.067	0.132 ± 0.068	0.141 ± 0.068	0.132 ± 0.066
MG	0.179 ± 0.028	0.196 ± 0.027	0.166 ± 0.022	0.195 ± 0.027	0.166 ± 0.026	0.201 ± 0.030	0.181 ± 0.028
Journal	0.180 ± 0.063	0.250 ± 0.070	0.218 ± 0.086	0.207 ± 0.065	0.197 ± 0.060	0.219 ± 0.065	0.216 ± 0.062
Boston	0.124 ± 0.030	0.145 ± 0.033	0.1360 ± 0.085	0.127 ± 0.031	0.129 ± 0.032	$0.121 {\pm} 0.032$	0.129 ± 0.031
Titanic	0.182 ± 0.025	0.202 ± 0.027	0.185 ± 0.041	0.192 ± 0.0264	0.193 ± 0.027	0.203 ± 0.027	0.194 ± 0.027

Table 1 NEUR-HCI, Classification setting: Classification error (average and variance over 1,000 runs).

Dataset	MLP	Linear Reg.	NCI	NCI+U	NHCI	NHCI+U
CPU	0.0005 ± 0.0016	0.0022 ± 0.0019	0.0023 ± 0.0032	0.0009 ± 0.0013	0.0026 ± 0.0023	0.0009 ± 0.0011
CEV	0.0094 ± 0.003	0.0434 ± 0.0442	0.0437 ± 0.0037	0.0264 ± 0.0027	0.0197 ± 0.0017	0.0176 ± 0.0017
LEV	0.0312 ± 0.0254	0.0252 ± 0.0029	$0.0252 {\pm} 0.0031$	$0.0252 {\pm} 0.0029$	N/A	N/A
MPG	0.0047 ± 0.0008	0.0089 ± 0.0019	0.0084 ± 0.0018	0.0056 ± 0.0013	0.0091 ± 0.0018	0.0057 ± 0.0012
Journal	0.0410 ± 0.010	0.0524 ± 0.0128	0.0631 ± 0.0127	$0.0385 {\pm} 0.0112$	0.0629 ± 0.0127	0.0391 ± 0.0117
Boston	0.0079 ± 0.0030	0.0174 ± 0.0038	0.0157 ± 0.0037	$0.0072 {\pm} 0.0023$	0.0151 ± 0.0033	0.0077 ± 0.0023

 Table 2
 NEUR-HCI, Regression setting: Mean square error (average and variance over 1,000 runs)

Dataset	MLP	Linear Reg.	NCI	NCI+U	NHCI	NHCI+U
CPU	0.0005 ± 0.002	0.0006 ± 0.003	0.0007 ± 0.003	0.0006 ± 0.003	0.0009 ± 0.003	0.0010 ± 0.004
CEV	0.0174 ± 0.012	0.0642 ± 0.011	0.0243 ± 0.005	0.0099 ± 0.002	0.0165 ± 0.004	0.0088 ± 0.003
LEV	0.0178 ± 0.025	0.0179 ± 0.023	0.0178 ± 0.024	$0.0177 {\pm} 0.023$	N/A	N/A
MPG	0.0613 ± 0.012	0.0642 ± 0.011	$0.0610 {\pm} 0.011$	0.0612 ± 0.011	0.0633 ± 0.012	0.0621 ± 0.011
DB	0.1355 ± 0.0796	0.1257 ± 0.079	0.1216 ± 0.081	0.0942 ± 0.069	0.1231 ± 0.092	0.0962 ± 0.081
MG	0.2601 ± 0.046	0.2661 ± 0.047	0.2668 ± 0.045	$0.2381 {\pm} 0.037$	0.2701 ± 0.052	0.2446 ± 0.036
Journal	0.1801 ± 0.064	0.1802 ± 0.065	0.1761 ± 0.063	0.1838 ± 0.066	0.1711 ± 0.063	0.1889 ± 0.065
Boston	0.0659 ± 0.016	0.0790 ± 0.014	0.0790 ± 0.015	$0.0669 {\pm} 0.012$	0.0752 ± 0.014	0.0681 ± 0.014
Titanic	0.1521 ± 0.027	0.1651 ± 0.029	0.1632 ± 0.028	0.1533 ± 0.028	0.166 ± 0.028	0.1542 ± 0.029
Arguments 1	0.0157 ± 0.015	0.0195 ± 0.016	0.0145 ± 0.012	0.0141 ± 0.012	0.0141 ± 0.012	0.0140 ± 0.012
Arguments 2	0.0588 ± 0.028	0.0653 ± 0.031	0.0644 ± 0.028	0.0581 ± 0.027	$0.0572 {\pm} 0.027$	$0.0572 {\pm} 0.028$
Arguments 3	0.0740 ± 0.039	0.0941 ± 0.042	0.0783 ± 0.040	0.0784 ± 0.040	$0.0761 {\pm} 0.039$	0.0771 ± 0.041

Table 3 NEUR-HCI, Ranking setting: percentage of mis-ordered pairs (average and variance

State of the Art Approach CB2 (Cut the Black Box) Conclusion

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results

Application to Image Processing

- State of the Art
- Approach CB2 (Cut the Black Box)
- Conclusion

State of the Art Approach CB2 (Cut the Black Box) Conclusion

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models
- Identifiability
 - Characterization of the separation frontiers
 - Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

Explanator

State of the Art Approach CB2 (Cut the Black Box) Conclusion

Main approaches of XAI for Image Processing

Feature Attribution				
Test Image	3A			
Explanation for class « Siberian Husky »	-			
Explanation for class « Transverse Flute »	S			

* Checkermallo, 2016

t Kim at al. Quantitative

Explicit Concepts

* *Kim et al.* Quantitative testing with concept activation vectors (TCAV). 2018

Implicit Concepts

* *Fell et al.* CRAFT: Concept Recursive Activation FacTorization for Explainability. 2023

* *Chen et al*. This Looks Like that. 2019

State of the Art Approach CB2 (Cut the Black Box) Conclusion

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models
- Identifiability
 - Characterization of the separation frontiers
 - Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results
- Application to Image Processing
 - State of the Art
 - Approach CB2 (Cut the Black Box)
 - Conclusion

State of the Art Approach CB2 (Cut the Black Box) Conclusion

CB2: Cut The Back-Box

State of the Art Approach CB2 (Cut the Black Box) Conclusion

CB2: Cut The Back-Box

Christophe Labreuche Hierarchy of Choquet Integrals in ML

State of the Art Approach CB2 (Cut the Black Box) Conclusion

CB2: Cut The Back-Box

Choice of a set C of concepts

- Provided by domain expert
- Domain Ontology, Concept-Net ontology
- Most frequent words in dictionary

Conceptual Representation

- VLM (Visual Language Model) with pivotal representation
 - $\phi_{\mathbf{v}}$: images $\rightarrow \mathbb{R}^m$
 - $\phi_t : \text{text} \to \mathbb{R}^m$

• Degree of relevance of concept *c* in image \mathbf{x} : $\hat{x}_c =$

$$\langle \phi_{m{v}}({f x}), \phi_t({f c})
angle$$

State of the Art Approach CB2 (Cut the Black Box) Conclusion

CB2: Cut The Back-Box

Alignment

- $f: z \mapsto \hat{z}$ and $g: \hat{z} \mapsto z$
- Alignment loss:

$$\mathcal{L}_{ ext{Align}}(\mathcal{H}) = \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \left[\left\| \hat{\mathbf{z}}(\hat{\mathbf{x}}) - f(\mathbf{z}(\mathbf{x})) \right\|^2 + \left\| \mathbf{z}(\mathbf{x}) - g(\hat{\mathbf{z}}(\hat{\mathbf{x}})) \right\|^2
ight]$$

Distillation

Distillation loss

$$\mathcal{L}_{\text{Dist}}(H) = \sum_{j=1}^{L} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \left[H_j(\hat{\mathbf{x}}) \log(y_j(x)) + (1 - H_j(\hat{\mathbf{x}})) \log(1 - y_j(x)) \right]$$

State of the Art Approach CB2 (Cut the Black Box) Conclusion

Outline

- Hierarchical Decision Models with Interaction
 - Context
 - Model with Interaction
 - Hierarchical Decision Models

Identifiability

- Characterization of the separation frontiers
- Identifiability Result
- Application to Machine Learning
 - Neur-HCI: Representation of UHCI
 - Experimental results

Application to Image Processing

- State of the Art
- Approach CB2 (Cut the Black Box)
- Conclusion

State of the Art Approach CB2 (Cut the Black Box) Conclusion

Epilogue

Take-away messages

UHCI model is a good model

- can be learnt from data
 - very versatile Neural Network architecture
- is interpretable
 - hierarchy is uniquely determined
 - explained through pie charts, importance/interaction coefficients
- can be used for image processing
 - as a surrogate model of DL
 - taking as inputs relevant concepts

State of the Art Approach CB2 (Cut the Black Box, Conclusion

Epilogue

Some Extensions

- Other models from Decision Theory
 - Generalized Additive Independence
 - MR-Sort
 - • •
- Learn the hierarchy
- Other types of explanations
 - Counterfactuals / Anchors
 - Causality: actual causes

References

- C. Labreuche, S. Fossier. *Explaining Multi-Criteria Decision Aiding Models with an Extended Shapley Value*, **IJCAI'2018**
- C. Labreuche, S. Destercke. *How to handle missing values in Multi-Criteria Decision Aiding?*, IJCAI'2019
- R. Bresson, J. Cohen, E. Hullermeier, C. Labreuche, M. Sebag. *Neural Representation and Learning of Hierarchical 2-additive Choquet Integrals*, **IJCAI'2020**
- R. Bresson, J. Cohen, E. Hullermeier, C. Labreuche, M. Sebag. *On the Identifiability* of *Hierarchical Decision Models*, **KR'2021**
- C. Labreuche. Explanation with the Winter Value: Efficient Computation for Hierarchical Choquet Integrals, IJAR'2022
- C. Labreuche, R. Bresson. Necessary and Sufficient Explanations of Multi-Criteria Decision Aiding Models, with and without interacting Criteria. conference **xAl'2023**
- N. Atienza, R. Bresson, C. Rousselot, P. Caillou, J. Cohen, C. Labreuche, M. Sebag. Cutting the Black Box: Conceptual Interpretation of a Deep Neural Net with Multi-Modal Embeddings and Multi-Criteria Decision Aid. IJCAI'2024