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Multi-Criteria Decision problem

Multi-Criteria Decision Aiding (MCDA)

@ N = {1,...,n}: index set of attributes/features.
@ X;: set of values representing attribute/feature i (for i € N).
@ X = Xi x--- x Xp: set of alternatives/instances.
X = (x1,...,Xn) € X with x; € X.
@ Problem to solve, given a set of alternatives in X:

@ choose the most preferred one
e rank the alternatives from best to worse
e sort the alternatives into preferential categories

@ U: X — R: utility representing preferences of decision maker over X
e U(y) > U(x): y is preferred to x
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From a typical MCDA context . ..

Multi-Criteria Decision Aiding (MCDA)

Selected model: Hierarchical Choquet Integral.

compatison Reference point

Why?

Independence
< between criteria

Utility S
4 Interaction m
among criteria iy Hierarchical

Assessment of each
alfernalive individuall model

Complex experfise lo

represent Large # of criferia

Model characteristics

@ Model from Social

Sciences (cognitive
bias)

@ Interpretable model

Model Construction

@ Elicitation (small &
consistent data)
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From a typical MCDA context . ..

Design of Tracking System for Air Traffic Management

Real trajectory

ReHIS! = A320 Tracki i -
Ny racking quality attributes:

@ Position Error (PE)
@ Heading Error (HE)
@ Completeness (C)
Attributes are measured for each type of aircraft:
COR @ Commercial Airplanes (CA)

AUJIB791 = A320
& @ Recreational Airplanes (RA)

} Son Aim: Use MCDA to select the best tracking system.

Overall
Performance

CTN654 = A320
360
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.. towards the use of MCDA within Machine Learning (ML)

Object Detection in Images What we’d like to have - - -
o Incorporate MCDA

Aim: Locate bounding boxes around objects of interest and classify them.
: within ML to improve

its interpretability J

Model characteristics

@ Deep Learning

@ Not Interpretable

Model Construction
("]

Machine Learning

(large & noisy
dataset)
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General model

Decomposable preference model [Krantz et al'1971]

U(x) = A(ui(x1), - - -, Un(Xn))
where (
@ vu;: X; — [0, 1]: marginal utility function
@ A:[0,1]" — [0, 1]: aggregation function
Scale [0, 1] is typically a satisfaction degree.
Properties:
@ Monotonicity
v< I [ I L
ui(x;) > ui(x]) : x; at least as good as x/ p p F ! ]
ViV, v > v = AV) > A(Y) 40 L 40 40 —40
7 [ 1
@ Idempotency: uy AUz | |usf u,
Ale,...,a) =a VYa € [0,1] (
~ I i I
X1 X2 X3 Xy

Christophe Labreuche Hierarchy of Choquet Integrals in ML



Hierarchical Decision Models with Interaction

Context
Model with Interaction
Hierarchical Decision Models

Simplest aggregation model

Weighted sum

WSw(V) =D wi v,
ieN
where w = (wj, . .., wp) are the criteria weights with 1
w; >0 (monotonicity)
> w;=1 (idempotency)
ieN
Interest of the WS:
@ Very simple to understand
@ Criteria weights make sense to people
(= Feature Attribution in ML) 0
0 1
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Generalization of the Weighted Sum

Piecewise Affine function

Model PA(v)
@ D: (finite) partition of [0, 1]”
@ PA is a (monotone and idempotent) WS in each domain of D 1
@ PA is continuous

Interest of the PA:
@ Universal approximator
(= see RelLU-based Neural Networks in ML)

@ Might be doable to understand it
(= SP-LIME in ML [Singh et al’2016])
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A Particular Piecewise Affine model

Choquet integral

Idea:

',
@ Idempotency: it makes sense to compare v; with v; 1
@ Piecewise Affine function in domains of the form vs > vy > v, > - - - .
. <
Cm(v) = Z m(S) - /\ Vi (/\ = min) V1 =¥

SCN i€s

@ Normalization: 3= gy m(S) = 1

\
@ m: Mabius coefficients \ v 2V,

@ Monotonicity: Vi € NVYS C N\ {i} > rcem(TU{i})>0 \

) 0 >
@ Very versatile model:
Y 0 1 "
@ Complementarity among criteria (m(S) > 0) --- veto
@ Redundancy among criteria (m(S) < 0) ... favor
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A Particular Piecewise Affine model

Complexity of the Choquet integral

The Choquet integral contains 2" parameters:
m:2N 5 R.

Submodels of the Choquet integral
Cn(v)=>_m(S)- min v,

Ses

where S C 2N,
Example:
@ k-additive:
S:{SQN g |S|§k}.
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Choquet integral

2-additive Choquet integral

v)_va\/,+ZZ N (Vi Av) +ZZ v vivy) A

i=1 j=i+1 i=1 j=i+1
@ Monotonicity: Vi,j € N w; > 0,w/; > 0,w;; >0

@ Normalization: Z w; + E Z +Z Z w; =
i=1 i=1 j=i+1 i=1 j=i+1 k

0.25 X Vg + 0.25 X Vyg AVyp + 0.24 X Vg AV + 0.09 X vy 4+ 0.08 X vy + 0.09 X vy Avyp

Weighting of : “economic data’
——@Weighting of : “human factors' .
* Mission Success: 28%
——eWaighting of : "Mission Succe:
) HOn Succesy <::| * Human Factors: 33%
y between ‘human factors' and " economic data' +  Economic Data: 92%
y between "Mission Success' and "economic data

'Complementarity between *Mission Success’ and “human factors'

min, V = max]

istophe Labreuch y of Choquet Integrals in



Hierarchical Decision Models with Interaction
Context

Model with Interaction
Hierarchical Decision Models

Choquet integral

Interpretation

Importance of criteria:

0.30
\ - 0.002 0 0.12 0.05 ﬂ
wyY.
1)

Wi+ w;
pi=wi+y ——1
2 2 ~ - 0002 | 015 0001 0094 0052 015 0.24
J#I
. B ~oef m- 0 0001  0.002 0 0 0.001 |
Interaction between criteria: o
A A T - 012 0094 0 026 [EIYM 025 |
e oz
L — \
/ _W,'J' else w- 005 0052 0 0.047 0087 0025
- 0.06
© ﬂ 015 | 0001 [NVEERN 0025 [JEVERS
i . . -0.00
1 2 3 4 5 6
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Interconnected Choquet Integrals

Theorem [Ovchinnikov’'2002]

Any continuous piecewise affine function can be represented by a network of interconnected Choquet integrals.

/ \ S1
:W/: {
& .

@ Layer a;: inputs 0
@ Layer s;: weighted sums of the inputs (1 per affine part) 0 1 Uy
@ Layer U: MinMax function that triggers the correct affine function
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Interconnected Choquet Integrals

Discussion

Drawback of previous architecture
@ The middle layer (s;) might be extremely large;
@ Fully connected layers are hard to understand and explain.
Modification:
@ Consider a tree rather than a fully connected network: more understandable;

@ The same approximation quality might be achieved with less nodes but deeper
graphs.
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Hierarchical models

Limitation of a flat model

HCI (Hierarchical Choquet Integral) UHCI (Utilitaristic Hierarchical Choquet
Integral)
U= Vs
U=w
5 v,

Va %1 V2 U3

/\ ulT uzT u3T

%1 172 VU3 X1 Xy X3
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|dentifiability

Identifiability of a model class: injectivity of its parameterization.
@ C = {Fy,0 € ©} a family of functions defined on X
@ O the parameter space
@ Fy € C parameterized by 6

Then C is identifiable if and only if: VX € X, Fp(X) = Fo:(X) = 0 = 0.

©=R? X=R.
Cy = {Fap : X — abx, (a,b) € ©} is not identifiable, as 734 = Fg 2
Co ={Fap: X— ax+b, (a b) € ©} is identifiable
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@ ltis easier to learn
@ The model is interpretable

Identifiability of the 'UHCI parameters but also the ' hierarchy .

Not a foregone conclusion ---  wrong for graphs
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Separation frontiers of an HCI model

HCI model A: piecewise affine function

@ Partition D = {Ds,...,Dp} of [0,1]" . V2
@ Set of affine functions £ = {L4, ..., Ly} .
@ Forallje {1,...,p}and v € D;, A(v) = L;(v)
D5
0
0 1 U

Separation frontiers of an HCI model
As A is continuous, the separation frontiers between the affine parts are hyperplanes.
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Separation frontiers of an HCI model

lllustration
Model: Linear parts:

@ @ vi, o — V4 has 2 linear parts: AN

/7N
/7N v; and V1J2FV2 O G

@ @ Separation frontiers . ..

@f \@ @ ...of vz, vs — v5: ®f®\®
V3 = Wy
Vi+VvViAW @ @
V4=f @ ... hence of vy, Vo, v3 — V5! ®
Vs + V3 A vy 7N
Vs = 2 Vi=Vo, Vi = V3 and %:Vg }@,\ @
O_®
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Separation frontiers of an UHCI model

Marginal utility functions are piecewise C' functions

. f1(X1)ifX1 <«
Uy (X1) - { f1/(X1) else

UHCI model U: piecewise C' model

@ Partition D = {D4,...,Dp} of X
@ Setof C' functions C = {C,..., Cp}
@ Forallje {1,...,p}and x € D;, U(x) = C;(x)
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Separation frontiers of an UHCI model

Illustration

‘/1_1()(1) V2_f(X) V- { 3( )|X3 (0%

@ @ o) lse
V4 Vi A\ V;
V4:%
ofiko oot

2
Separation of vi, o, v3 — V5 Separation of x1, X2, X3 — Vs
Vi =W f1 (X1) = fg(Xg)
Vi= Vs fi(x)=h(xs) , fi(x)=hH(x)
V142rV2 = v f1(X1)+f2(X2) =f(xs) , fi X1)+f2(X2 = £}(xs)
X3 =«
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Can we deduce the hierarchy from the separations?

Illustration

Jo) ©
@@ @@
g | do

Separation of x1, X2, X3 — Vs

Separation of x1, X2, X3 — Vs

H(x2) = f3(x3) fi(x1) = f(x2)

fi(x1) = (x2) hi(x) = f(xs) , fi(xi) = f3(xs)
fi(x) = M f1(X1)+f2(X2 = f5(x3)
fi(a) = fz(xz);fé(xa) A (x1)+h(xp) (X1)+f2(X2 = fi(xs)

X3 =« X3—Oé
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Can we deduce the hierarchy from the separations?

Illustration

® O]

VA 7N

O © ON[O)

A

AR
ONNO) ONNO)

Separation of x1, X2, X3 — Vs Separation of x1, X2, X3 — Vs
H(x2) = f5(x3) fi(x1) = f(x2)
fi(x1) = f(x2) h(x) = f(xs) , fi(xi) = f3(xs)
fi(x) = fz(Xz);fs(Xa) fi (M);fz(xz) = f(xs)
fi(x) = Bl Bl g(x)
X3 =« X3 =«
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Can we deduce the hierarchy from the separations?

The separation frontiers are of the form e
@ x; = o for aleaf node i € N; /’
@ > ek Welp(Xe) = ek We Ug(Xe) such that

e w,>0forallte Kt UK~ @/

e Jk € Vand k™, k~ € Children(k) s.t.

K* C Leaf(k*) and K~ C Leaf(k™) / \ / \

Leaf(k™)
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Assumptions

From the previous construction, the hierarchy cannot always be uniquely determined.

Counter-example #1

For a weighted sum, the hierarchy cannot be recovered from the expression of the model.

Example vs = &3, vg = 452 and v; = 3%,

7N

®
@éé g@ ) @7@@ @7@“@
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Assumptions

Let k € V. For a given Cl, we write Sk the set of subsets of Children(k) having a non-zero
Mobius coefficient.

Assumption H1

At every aggregation node k € V, Children(k) is the only connected component of graph

(Children(k), {(i,j), i # js.t. 3S € Sk : {i,j} € S}

\
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[llustration of H1

Illustration

H1 forbids to have a model Cy,, that is (even only partly) additive.

1 1
@ V5= Cp(vi,Va,V3,V4) = Vi AVa+5V3 A Vg

e violates H1: {1,2} and {3, 4} are disconnected

® Vs =ViAVa, V7 = V3 A vgand vs = EF7 is equivalent

®

7N

®
@éé g@ ) @7@@ @TQ@

® Cm(V1, V2, V3, V4) = V1 A Va + V2 A V3 + 33 A V4 satisfies H1
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Assumptions

Counter-example #2

A pure min function.

Sy /%\
T®s ofole

For all nodes k € V:

|Sk| > 2.
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Illustration of H2

H2 (combined with H1) forbids from having a simple min between two variables.

@ v4 = vi A v, (violating H2) and vs = % + ‘5%
@ We can rewrite v5 = % + 4020

®
/7N

» © . /i\

040 ofoRo
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|dentifiability result

Let 7 and F’ be two UHCI with potentially different hierarchies, fuzzy measures and
marginal utility functions. Assume that both models fulfill H1, H2. Assume,
Vx € X, F(x) = F'(x).

Then, both models have the same hierarchy, fuzzy measures and marginal utilities.
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Neuronal Representation

Monotonic Marginal Utility
Conditions on u;:
@ y; is non-decreasing on X; 1o
(] . lim ui(x;) =0

) 5 {52 =
yAim,, Ui} =1

Convex sum of sigmoids:

Ld rk 00| ———

Uj(X,-) = g m 5 0o o2 o4 o6 o8 10
With:

Pk K
@ Y rf=1andVk, r >0
k=1

@ vk, nf >0
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Neuronal Representation

Monotonic Marginal Utility
Conditions on u;:
@ y; is non-decreasing on X; 10 o
(*] lim U;(X;) =0 as
Xj——00

@ (X)) =
x,-ﬂngoo ui(%) 1 s

Convex sum of sigmoids:

02

00{ ——

k

:Z ("/X’ Bk) ’

k=0 1+e

oo o2 ola s s 1o

With:
P
@ Y rf=1andvk, rf >0
k=1

@ vk, nf >0
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Neuronal Representation

Monotonic Marginal Utility

p rk It Hidden
ui(x;) = Z ﬁ ) ? |§y¢r
k=0 1+ e (nfi—8f) G-} (oD)
- it Utility
where e,
Lok K r2 @
@ > rf=1andVk, rf >0 N
k=1 3
1
@ vk, nf >0
A utility module with 3 hidden nodes (p = 3)
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Neuronal Representation

Cw(Vv) = ZW’V’+ZZ ( (Vi A V) + Wy (V;\/\/j))

i=1 j=i+1
@ Vie N,VjeN, - )
w; > 0,w/} > 0,w); >0 Utility layer Hidden layer Output layer
= W= T T = @ A
n n n Uy ( )
@ Y wity X (Witwy) =1 b \“/\\%

=1l =il j=i+-1
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Composition of the different parts

Composition of aggregation and Marginal Utility patterns [Bresson et al, IJCAI'2020]

U=vs ® @
n u <

Uy 1 P @

vy V2 vy T ’ e
wl  w]  ul ® o i

X1 X X3 1 3 g
v

z3 P2

7 us
il 7
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Application to Machine Learning

Composition of the different parts

Neur-HCI: Representation of UHCI
Experimental results

Ensuring Monotonicity and Normalization conditions

Monotonicity

Normalization

Utility function

clipping:

K
o

rf « max(rk, 0) = 2

=i

. R — R i
Aggregation Wi 4= 5=

ggregatio Z; — w; = softmax(z,-) ! 2:l Wi

2 < softmax ' (w;)

Christophe Labreuche
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Experimental Results - Performance

Datasel pling Togistic Reg, CUR NCT NCI+U NTICT NICHHU
CPU | 0.015 £ 0.021 | 0.091£0.051 | 0021 = 0025 | 0.015+0.039 002320021 | 0.030£0.027 | 0.023=0.026
g 0.004 + 0.004 | 0.110+£0.023 | 0.081=0.067 0.059+0.012 0.051£0.023 | 0.035+0.009 | 0.019£0.017

0.135 £ 0.021 | 0161+ 0.022 | 0.14320.0213 | 0.136 £ 0.022 | 0.185  0.019 N/A N/A
0113 £ 0.036 | 0.090 £ 0.030 | 0.112 20,099 | 0.086 £ 0.027 | 0.079 £ 0.027 | 0.085 £ 0.020 | 0.082 £ 0.027

0143 £ 0.069 | 0.164+ 0071 | 0.235 £ 0.017 |  0.139£0.067 1182 0. 0.141 £ 0.068 | 0.182 = 0.066
0179 40028 | 0.196 +0.027 | 0.166= 0.022 | 0.195 + 0.027 | 0.166 = 0.026 | 0.201 = 0.030 | 0.181 = 0.028

Jonrnal 0.250£0.070 | 0.218=0.086 0.207+0.065 0.197£0.060 | 021940065 | 0.216=0.062

Boston 0.14510.033 | 0.1360L 0.085 | 0.127-L0.031 012010032 | 0.12140.032 | 0.12920.031

Titanic | 0.182 1 0.025 | 0.202 L 0.0

0185 £ 0041 | 0192000264 | 0.193 £ 0.027 | 0203L0.027 | 0.19420.027

Table 1 NEUR-HCI, Classification setting: Classification error (average and variance over
1,000 runs).

Datasct MLP TLincar Reg, NCT NCIHU NHCT NHCLHU
CPU | 0.0005 = 0.0016 | 0.0022+0.0019 | 0.0023+0.0032 | 0.0009£0.00 0.0026=0.0023 | 0.0009%£0.0011
DBV 0.0094 £ 0.003 | 0.0434+0.0442 | 0.0437£0.0037 | 0.0264:£0.0027 | 0.01970.0017 | 0.0176::0.0017

LEV 0.0312 + 0.0254 | 0.0252:+0.0029 | 0.0252::0.0031 | 0.0252+0.0029 N/A N/A

MPG | 0.0047 = 0.0008 | 0.0089:£0.0019 | 0.0084+0.0018 | 0.005620.0013 | 0.0091=0.0018 | 0.00570.0012
Journal | 0.0410 £ 0.010 0.0524£0.0128 | 0.0631+0.0127 | 0.038520.0112 | 0.0629 = 0.0127 | 0.0391 £ 0.0117
Boston | 00079 + 0.0030 | 0.0174:£0.0038 | 0.0157 i 0.0151 = 0.0033 | 0.0077 4 0.0023

0037 | 0.0072+0.00:

Table 2 NEUR-HCI, Regression setting: Mean square error (average and variance over 1,000

runs)

Datasel MLP ar Reg NCT NCI=U NHCT NHOILU
CPU 0.0005 = 0.002 | 0.0006 £ 0.00 | 0.0007 = 0.003 | 0.0006 = 0.003 | 0.0000 £ 0.008 | 0.0010 £ 0.004
CEV 00174+ 0.012 | 0.06420.011 0024320005 | 0.0099£0.002 | 0.0165+0.004 | 0.0088+0.003
LEV 0.0178 + 0.025 | 0.017910.023 | 0.0178 10.024 | 0.017700.023 N/A N/A
MPG 0.0613 £ 0.012 | 0.0642:0. 0.061010.011 | 0.061210.011 | 0.063310.012 | 0.062110.011

DB 0.1355 =+ 0.0796 0121650081 | 0.0942+0.069 | 0.1231 + 0.092 | 0.0962 + 0.081

MG 0.2601 % 0.016 026680015 | 0.2381=0.037 | 027010052 | 0.2446 0.036

Jourual 0.1501 + 0.064 0176140063 | 0.1838£0.066 | 0.171140.063 | 0.1889£0.065
Boston | 0.0659 - 0.016 007900015 | 0.066940.012 | 0.0752 + 0.014 | 0.08L + 0.014
anic | 0.1521 + 0.027 01632 £0.028 | 0.1533 +0.028 | 0.166 +0.028 | 0.1542 + 0.020
Argnments 1 | 0.0157 £ 0.015 0011550012 | 0.0141+0.012 | 0.0141=0.012 | 0.0140=0.012
Arguments 2 | 0.0588 £ 0.028 | 0.0653=0.031 | 0.0644+0.028 | 0058140027 | 0.0572+0.027 | 0.0572:+0.028
Arguments 3 | 0.0740 = 0.089 | 0.0941£0.042 | 0.0783+0.040 | 0.0784+0.040 | 0.0761+0.089 | 0.0771:0.041

Table 3 NEUR-HCI, Ranking setting: percentage of mis-ordered pairs (average and variance
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Main approaches of XAl for Image Processing

Feature
Attribution

Test Image

Explanation
for class

« Siberian
Husky »

Explanation
for class

« Transverse
Flute »

* Checkermallo, 2016
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CB2: Cut The Back-Box
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the degree to which . the black and
ench concept Is CE—" g surrogate models
- o Sparse s
activated in an image v X Encoding Z 5
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tailored fit Il Decision =
denim ] %
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2. Do not use pixels as inputs
of the surrogate model;
rather use concepts

graphic tee design ]
short sfeeves I}

concepts

ﬂ T-Shirt
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explainable (HCI)
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CB2: Cut The Back-Box
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CB2: Cut The Back-Box

Choice of a set C of concepts
@ Provided by domain expert
@ Domain Ontology, Concept-Net ontology
@ Most frequent words in dictionary

Conceptual Representation

@ VLM (Visual Language Model) with pivotal representation
® ¢, : images — R”
@ ¢ : text — R”

(9v(x), 1(c))
[oe(c)ll

Christophe Labreuche Hierarchy of Choquet Integrals in ML

@ Degree of relevance of concept ¢ in image x: . =
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CB2: Cut The Back-Box

SEl

&5 SSE Alignment &

@f:z—zandg:2—z
@ Alignment loss:

EAlign(H) = Z

(x,y)eD

[12(%) — () + 12() — g(&(%))]]

Distillation
@ Distillation loss

Lpisi(H) = i {

j=1 (x,y)eD

Christophe Labreuche Hierarchy of Choquet Integrals in ML

X) log(y;(x)) + (1 — H;(X)) log(1 — y;(x))
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Epilogue

Take-away messages

UHCI model is a good model
@ can be learnt from data
e very versatile Neural Network architecture
@ is interpretable
@ hierarchy is uniquely determined
e explained through pie charts, importance/interaction coefficients
@ can be used for image processing

@ as a surrogate model of DL
e taking as inputs relevant concepts
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Epilogue

Some Extensions

@ Other models from Decision Theory
e Generalized Additive Independence
e MR-Sort
 ---

@ Learn the hierarchy

@ Other types of explanations

o Counterfactuals / Anchors
o Causality: actual causes
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