Credal ensembling in multi-class classification

Vu-Linh Nguyen

vu-linh.nguyen@hds.utc.fr Chaire de Professeur Junior, Heudiasyc Université de technologie de Compiègne, France

LFA 2024, 7 November 2024, Brest, France

Outline

Credal ensembling

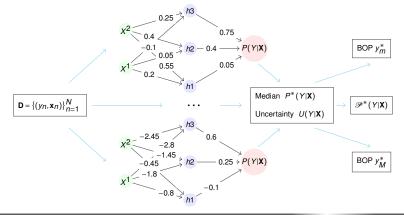
- A median classifier: Learning and inference
- A credal classifier: Learning and inference
- Applications in machine learning
- Points of discussions
- Conlusion

heudiasyc

A formal framework [2, 3]

Basic setup:

- Features (X^1, \dots, X^P) and a class variables Y
- An finite output space $\mathscr{Y} = \{y^1, \dots, y^C\}$



Outline

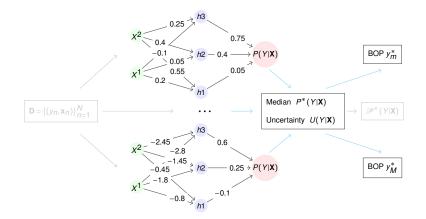
Credal ensembling

$_{\odot}\,$ A median classifier: Learning and inference

- A credal classifier: Learning and inference
- Applications in machine learning
- Points of discussions
- Conlusion

Credal ensembling Applications in machine learning Points of discussions Conlusion A median classifier: Learning and inference A credal classifier: Learning and inference

A median classifier and its predictions [2, 3]



Compute a median classifier

Basic setting:

- An ensemble $\mathbf{H} := {\mathbf{h}^m | m \in [M] := \{1, \dots, M\}}$ is made available
- A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

$$\mathbf{h}_{d} \in \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \mathbf{E} \left[\sum_{m=1}^{M} d(\mathbf{h}, \mathbf{h}^{m}) \right] = \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \int_{\mathbf{x} \in \mathscr{X}} \left[\sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})) \right] d\mathbf{x}.$$

Compute a median classifier

Basic setting:

- An ensemble $\mathbf{H} := \{\mathbf{h}^m | m \in [M] := \{1, \dots, M\}\}$ is made available
- A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

$$\mathbf{h}_{d} \in \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \mathbf{E} \left[\sum_{m=1}^{M} d(\mathbf{h}, \mathbf{h}^{m}) \right] = \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \int_{\mathbf{x} \in \mathscr{X}} \left[\sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})) \right] d\mathbf{x}.$$

If no constraint on \mathcal{H} , h_d can be defined in an instance-wise manner:

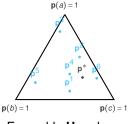
$$\mathbf{h}_{d}(\mathbf{x}) \in \underset{\mathbf{h}(\mathbf{x}) \in \Delta^{K}}{\operatorname{argmin}} \sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})).$$
(1)

Compute a median classifier (cont.)

For each \mathbf{x} , dropping \mathbf{x} and denoting $\mathbf{p} = \mathbf{h}$ give

$$\mathbf{p}_d \in \operatorname{argmin}_{\mathbf{p} \in \Delta^K} \sum_{m=1}^M d(\mathbf{p}, \mathbf{p}^m).$$
 (2)

Examples of d are squared Euclidean distance (sE), L_1 distance, and KL divergence.



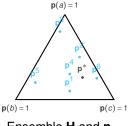
Ensemble H and psE

Compute a median classifier (cont.)

For each \mathbf{x} , dropping \mathbf{x} and denoting $\mathbf{p} = \mathbf{h}$ give

$$\mathbf{p}_d \in \operatorname{argmin}_{\mathbf{p} \in \Delta^K} \sum_{m=1}^M d(\mathbf{p}, \mathbf{p}^m).$$
 (2)

Examples of *d* are squared Euclidean distance (sE), L_1 distance, and KL divergence.



Ensemble H and p_{sE}

For any convex distance d:

- The convex optimization problem (2) can be solved using any solver.
- Close-form solution p_{sE} = averaging the distributions class-wise.

Bayesian-optimal predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $u: \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of u is

$$y_{d}^{u} \in \operatorname{argmax}_{y' \in \mathscr{Y}} \mathbf{E}[u(y', y)] = \operatorname{argmax}_{y' \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_{d}(y).$$
(3)

Bayesian-optimal predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $u: \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of u is

$$y_d^u \in \underset{y' \in \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}\left[u(y', y)\right] = \underset{y' \in \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_d(y).$$
(3)

Commonly used utilities, such as 0/1 and cost-sensitive accuracies:

- Find a BOP (3) takes from O(K) to $O(K^2)$
- A BOP $y_d^{0/1}$ (3) of 0/1 accuracy = a most probable class

Bayesian-optimal set-valued predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $U: \mathscr{Y} \times 2^{\mathscr{Y}} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(4)

Bayesian-optimal set-valued predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $U: \mathscr{Y} \times 2^{\mathscr{Y}} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(4)

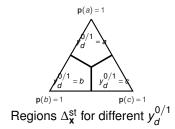
Commonly used utilities, such as utility-discounted accuracies:

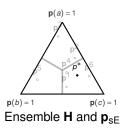
$$U(Y',y) = \frac{1}{g(|Y'|)} [\![y \in Y']\!], \qquad (5)$$

- Find a BOP Y_d^U (4) takes $O(K \log(K))$.
- A BOP Y_d^U (4) consists of the most probable classes on \mathbf{p}_d .

Credal ensembling Applications in machine learning Points of discussions Conlusion A median classifier: Learning and inference A credal classifier: Learning and inference

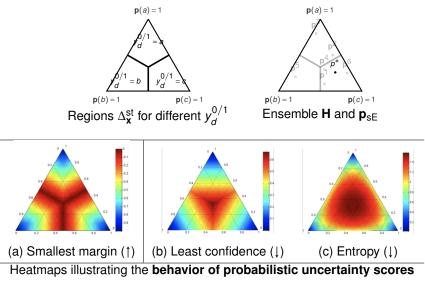
Probabilistic uncertainty scores





Credal ensembling Applications in machine learning Points of discussions Conlusion A median classifier: Learning and inference A credal classifier: Learning and inference

Probabilistic uncertainty scores



Probabilistic uncertainty scores (Cont.)

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{\rm st}) - \mathbf{p}_d(y^{\rm nd}).$$
(6)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	H ¹	H ²
	50→(0.6, 0.4, 0.0)	100→(0.3, 0.4, 0.3)
	50→(0.0, 0.4, 0.6)	
p sE	(0.3, 0.4, 0.3)	
$S_{ m SM}\left(\uparrow ight)$	0.1	
	Should we consider H ¹ and H ² the same?	

Probabilistic uncertainty scores (Cont.)

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(\boldsymbol{y}^{\rm st}) - \mathbf{p}_d(\boldsymbol{y}^{\rm nd}).$$
 (6)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	H ³	H ⁴
	80→(1.0, 0.0, 0.0)	100→(0.8, 0.2, 0.0)
	$\begin{array}{c} 80 \rightarrow (1.0, \ 0.0, \ 0.0) \\ 20 \rightarrow (0.0, \ 1.0, \ 0.0) \end{array}$	
p sE	(0.8, 0.2, 0.0)	
$S_{ m SM}\left(\uparrow ight)$	0.6	
	Should we consider H ³ and H ⁴ the same?	

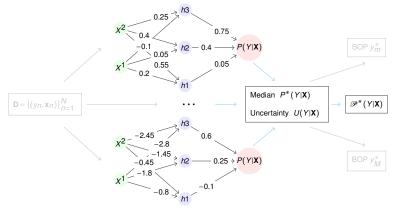
Outline

Credal ensembling

- A median classifier: Learning and inference
- o A credal classifier: Learning and inference
- Applications in machine learning
- Points of discussions
- Conlusion

Credal ensembling Applications in machine learning Points of discussions Conlusion A median classifier: Learning and inference A credal classifier: Learning and inference

A credal classifier and its predictions [2]



For any query instance, once $\mathscr{P}^*(\mathscr{Y}|\mathbf{x})$ is estimated:

- IP decision rules can be called to make set-valued predictions
- uncertainty scores defined for credal sets can be computed.

Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\},$$
(7)

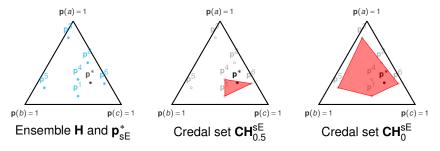
where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.

Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\},$$
(7)

where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.

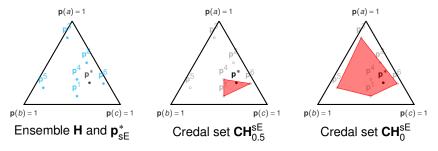


Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\},$$
(7)

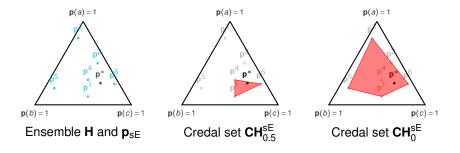
where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.



The hyperparameter $\alpha^* \leftarrow$ nested cross validation or a validation set.

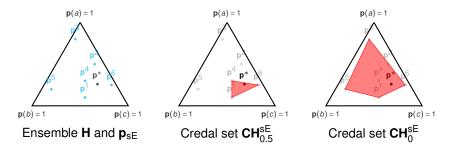
Optimal set-valued predictions under IP decision rules

Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.



Optimal set-valued predictions under IP decision rules

Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.



- Any IP decision rule $R_{\text{IP}}: 2^{\Delta^{K}} \longrightarrow 2^{\mathscr{Y}}$ can be applied.
- Any related algorithmic solutions can be leveraged.

14

Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

- The credal set $\mathbf{CH}_{a^*}^d$ is given.
- A the higher the better utility $u : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

E-admissibility under u:

- A class y is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- This can be checked by solving a linear program.

Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

- The credal set $\mathbf{CH}_{a^*}^d$ is given.
- A the higher the better utility $u : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

E-admissibility under u:

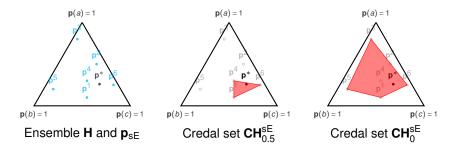
- A class y is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- This can be checked by solving a linear program.

Maximality under u:

- A class y is maximal if there doesn't exist y' ≠ y such that y' dominates y on at least one p ∈ CH^d_{a*} (w.r.t. u).
- This can be checked by solving K-1 linear programs.
- We can also enumerate all the distributions \mathbf{p}^m , $m \in [M]$.

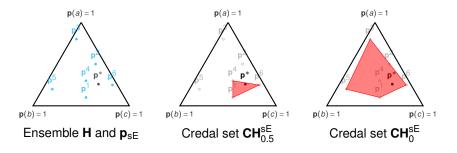
Credal set-based uncertainty scores

Basic set (instance-wise manner): The credal set $CH_{a^*}^d$ is given.



Credal set-based uncertainty scores

Basic set (instance-wise manner): The credal set $CH_{a^*}^d$ is given.

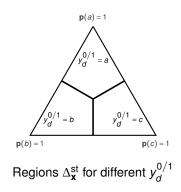


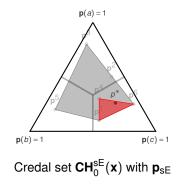
- Any credal set-based uncertainty score can be used.
- Any related algorithmic solutions can be leveraged.

Credal set-based uncertainty scores (Cont.)

Decision-related uncertainty scores:

- How certain the ensemble **H** is about y_d^u ?
- How consensus of the ensemble members is about y_d^u ?





Decision-related uncertainty scores

Basic setting (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- The predictions $\{\mathbf{p}^m | m \in [M]\}$ are given.
- A probabilistic uncertainty score $S : \Delta^K \longrightarrow \mathbb{R}$ is given.

Decision-related uncertainty scores

Basic setting (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- The predictions $\{\mathbf{p}^m | m \in [M]\}$ are given.
- A probabilistic uncertainty score $S : \Delta^K \longrightarrow \mathbb{R}$ is given.

A **decision-related uncertainty** version of *S* is (its empirical expectation over the decision region of the 1st class, normalized by the upper score)

$$\mathsf{RS}(\mathbf{p}_d^u) := \frac{1}{M+1} \left(\sum_{m=1}^M \left[\left[\mathbf{p}^m \in \mathbf{CH}_{y_d^u}^d \right] S(\mathbf{p}^m) + S(\mathbf{p}_d) \right],$$
(8)

where $\left[\!\left[\mathbf{p}^{m} \in \mathbf{CH}_{y_{d}^{u}}^{d}\right]\!\right] = 1$ implies y_{d}^{u} is a best solution on \mathbf{p}^{m} under u.

Decision-related uncertainty scores (Cont.)

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{\rm st}) - \mathbf{p}_d(y^{\rm nd}).$$
(9)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	H ¹	H ²
	50→(0.6, 0.4, 0.0)	100→(0.3, 0.4, 0.3)
	50→(0.0, 0.4, 0.6)	
p _{sE}	(0.3, 0.4, 0.3)	
$S_{ m SM}\left(\uparrow ight)$	0.1	
$RS_SM\left(\uparrow ight)$	0.0	0.1

Decision-related uncertainty scores (Cont.)

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(\boldsymbol{y}^{\rm st}) - \mathbf{p}_d(\boldsymbol{y}^{\rm nd}).$$
(9)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	H ³	H^4
	80→(1.0, 0.0, 0.0)	100→(0.8, 0.2, 0.0)
	$80 \rightarrow (1.0, 0.0, 0.0)$ $20 \rightarrow (0.0, 1.0, 0.0)$	
p _{sE}	(0.8, 0.2, 0.0)	
$S_{ m SM}\left(\uparrow ight)$	0.6	
$RS_{SM}\left(\uparrow ight)$	0.798	0.6

Should we put weights on the impact of ensemble members?

Outline

Credal ensembling

• Applications in machine learning

- Prediction making
- o Classification with rejection
- Uncertainty sampling
- Points of discussions
- Conlusion

Outline

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - o Classification with rejection
 - Uncertainty sampling
- Points of discussions
- Conlusion

Experimental setting

Basic setting:

- Use random forests of cardinality 100 as the ensembles
- Follow a 10-cross validation protocal.
- Use hyperparameter $\alpha^* \leftarrow$ nested 10 fold cross validation

Assess the impact of p_{sE} , p_{L1} and p_{KL} on

- the clean version of the data sets
- noisy version (randomly flip the class of 25% of training instances)

Basic setting:

- Use random forests of cardinality 100 as the ensembles
- Follow a 10-cross validation protocal.
- Use hyperparameter $\alpha^* \leftarrow$ nested 10 fold cross validation

Assess the impact of \mathbf{p}_{sE} , \mathbf{p}_{L1} and \mathbf{p}_{KL} on

- the clean version of the data sets
- noisy version (randomly flip the class of 25% of training instances)

Once credal set CH_{\alpha^*}^d is computed, it is used to

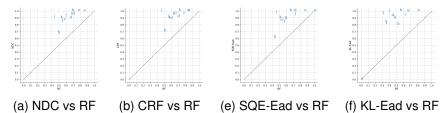
• find the set-valued prediction under the E-admissibility rule.

Results on clean data sets: U_{65} scores (in %) [3]

Data set: (N,P,K)	NDC	SQE-E	L1-E	KL-E	CRF	CH ₀
eco.: (336,7,8)	85.51	86.07	85.81	87.07	84.46	43.60
der.: (358,34,6)	97.18	97.05	97.22	98.59	96.19	51.74
lib.: (360, 90, 15)	76.58	73.35	75.24	79.41	73.45	14.60
vow.: (990, 10, 11)	86.63	86.35	87.65	92.35	82.68	17.75
win.: (1599, 11, 6)	68.66	68.32	68.39	68.63	67.35	36.53
seg.: (2300, 19, 7)	97.17	97.12	96.99	97.64	96.73	71.00

Results on clean data sets: U_{65} scores (in %) [3]

Data set: (N,P,K)	NDC	SQE-E	L1-E	KL-E	CRF	CH ₀
eco.: (336,7,8)	85.51	86.07	85.81	87.07	84.46	43.60
der.: (358,34,6)	97.18	97.05	97.22	98.59	96.19	51.74
lib.: (360, 90, 15)	76.58	73.35	75.24	79.41	73.45	14.60
vow.: (990, 10, 11)	86.63	86.35	87.65	92.35	82.68	17.75
win.: (1599, 11, 6)	68.66	68.32	68.39	68.63	67.35	36.53
seg.: (2300, 19, 7)	97.17	97.12	96.99	97.64	96.73	71.00



Correctness of cautious predictors (vertical) vs accuracy of RF (horizontal)

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - o Classification with rejection
 - Uncertainty sampling
- Points of discussions
- Conlusion

Basic setting:

- Randomly flip the class of 25% of training instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}\left(\uparrow\right)$ and $\mathbf{RS}_{SM}\left(\uparrow\right)$

Basic setting:

- Randomly flip the class of 25% of training instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}\left(\uparrow\right)$ and $\mathbf{RS}_{SM}\left(\uparrow\right)$

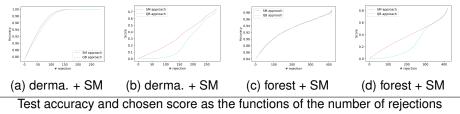
Budget based rejection protocal requires

- a sufficiently large number of test instances,
- a predefined number (or proportion) of rejections.

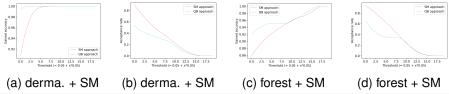
Threshold-based rejection protocal

- requires a predefined threshold on uncertainty score (†),
- rejects instances whose scores are lower than the threshold.

Results on noisy data sets [3]



 20×5 cross-validation with (train, test) = (20%, 80%)



Test accuracy and acceptance rate as the functions of the threshold 20×5 cross-validation with (train, test) = (20%, 80%)

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - o Classification with rejection
 - Uncertainty sampling
- Points of discussions
- Conlusion

Basic setting:

- Randomly flip the class of 25% of training + pool instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}\left(\uparrow\right)$ and $\mathbf{RS}_{SM}\left(\uparrow\right)$

Basic setting:

- Randomly flip the class of 25% of training + pool instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}\left(\uparrow\right)$ and $\mathbf{RS}_{SM}\left(\uparrow\right)$

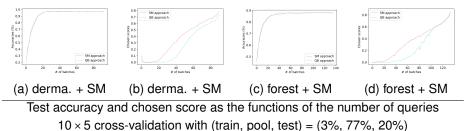
Budget based sampling protocal

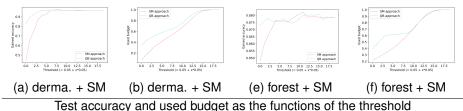
- requires a predefined number (or proportion) of queries,
- stops when the predefined number is reached.

Threshold-based sampling protocal

- requires a predefined threshold on uncertainty score (†),
- stops when the predefined threshold is reached.

Results on noisy data sets [3]



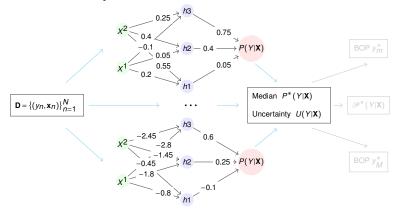


 10×5 cross-validation with (train, pool, test) = (3%, 77%, 20%)

- Credal ensembling
- Applications in machine learning
- Points of discussions
 - Compact deep ensembles
 - Assess credal classifiers
- Conlusion

- Credal ensembling
- Applications in machine learning
- Points of discussions
 Compact deep ensembles
 Assess credal classifiers
- Conlusion

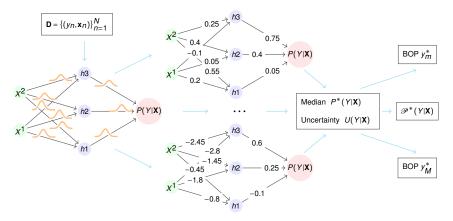
Conventional deep ensembles



Compared to the use of a single network:

- Much longer training time + Much larger storage memory
- Longer inference time

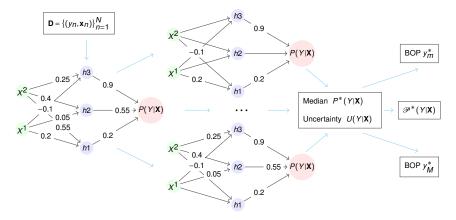
A BNN as an ensemble [5]



Compared to the use of a single network:

- A bit longer training time + A bit larger storage memory
- Longer inference time

A CNN with dropout predictions as an ensemble [4]



Compared to the use of a single network:

- Similar training time + Similar storage memory
- Longer inference time

- Credal ensembling
- Applications in machine learning
- Points of discussions
 - Compact deep ensembles
 - Assess credal classifiers
- Conlusion

Basic setting:

- Use BNNs with 100 Monte Carlo runs as the ensembles
- Use the clean version of the data sets

Assess the impact of $\textbf{p}_{sE},\,\textbf{p}_{L1}$ and \textbf{p}_{KL} on

	Image	train/test	# classes	
CIFAR-10	32x32 color	50,000/10,000	10	
Fashion-MNIST	grayscale	60,000/10,000	10	

Basic setting:

- Use BNNs with 100 Monte Carlo runs as the ensembles
- Use the clean version of the data sets

Assess the impact of p_{sE} , p_{L1} and p_{KL} on

	Image	train/test	# classes	
CIFAR-10	32x32 color	50,000/10,000	10	
Fashion-MNIST	grayscale	60,000/10,000	10	

Once p_d is computed, it is used to

- find precise prediction optimizing the $u_{0,1}$,
- find set-valued predictions optimizing the *u*₆₅ and *u*₈₀ [1].

Credal ensembling Applications in machine learning Points of discussions Conlusion Compact deep ensembles Assess credal classifiers

Results [5]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
$u_{0/1}(\uparrow)$	90.04	90.10	90.14	93.07	93.11	93.08
u65_set_size (↓)	2.03	2.02	2.03	2.02	2.02	2.02
u80_set_size (↓)	2.04	2.02	2.03	2.02	2.02	2.02
	94.91	95.91	97.53	97.53	97.19	98.43
c_pr_u65_c_se (↓)	5.08	4.08	2.46	2.46	2.80	1.56
w_pr_u65_c_se (†)	32.12	26.86	17.64	24.96	25.39	15.75
w_pr_u65_w_se (↓)	15.26	11.81	7.50	5.05	5.95	4.62
w_pr_u65_w_si (↓)	52.61	61.31	74.84	69.98	68.65	79.62
ccsi (↑)	86.89	93.22	94.28	94.34	94.03	95.47
c_pr_u80_c_se (↓)	13.10	6.77	5.71	5.65	5.96	4.52
w_pr_u80_c_se (†)	53.21	37.07	34.38	43.86	44.26	37.28
w_pr_u80_w_se (↓)	23.89	19.19	16.32	10.82	10.44	8.67
w_pr_u80_w_si (↓)	22.89	43.73	49.29	45.31	45.28	54.04

- Credal ensembling
- Applications in machine learning
- Points of discussions
- Conlusion

Conclusion

The credal ensembling framework for multi-class classification

- is simple and easy to use (in a few complex applications),
- is a direct generalization of the voting ensemble framework,
- might help to enlarge the set of credal classifiers,
- and enlarges the set of uncertainty scores.

heudiasyc

Conclusion

The credal ensembling framework for multi-class classification

- is simple and easy to use (in a few complex applications),
- is a direct generalization of the voting ensemble framework,
- might help to enlarge the set of credal classifiers,
- and enlarges the set of uncertainty scores.

It might facilitate applications of IP decision rules

- in a few complex application domains,
- which can be directly compared with probabilistic frameworks.

References I

heudiasyc

- T. Mortier, M. Wydmuch, K. Dembczyński, E. Hüllermeier, and W. Waegeman. Efficient set-valued prediction in multi-class classification. Data Mining and Knowledge Discovery, 35(4):1435–1469, 2021.
- [2] V.-L. Nguyen, H. Zhang, and S. Destercke. Learning sets of probabilities through ensemble methods.
 In Proceedings of the 17th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), pages 270–283, 2023.
- [3] V.-L. Nguyen, H. Zhang, and S. Destercke. Credal ensembling in multi-class classification. Submitted to Machine Learning, pages 1–59, 2024.
- [4] K.-D. Tran, X.-T. Hoang, D.-M. Nguyen, V.-L. Nguyen, S. Destercke, and V.-N. Huynh. Compact probabilistic ensemble learning in multi-class classification. Under preparation, pages 1–20, 2024.
- [5] K.-D. Tran, X.-T. Hoang, V.-L. Nguyen, S. Destercke, and V.-N. Huynh. Robust classification in bayesian neural networks.

In Submitted to the Eleventh International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM), pages 1–12, 2024.

Thanks to the fruitful collaborations with

Kim-Dung Tran Postdoc, UTC

Haifei Zhang MCF, UJM

Sébastien Destercke CNRS Senior researcher, UTC

Xuan-Truong Hoang PhD student, JAIST

Dang-Man Nguyen PhD student, JAIST

Van-Nam Huynh Professor, JAIST

